organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Chloro-N-(4-chlorobenzoyl)benzenesulfonamide toluene hemisolvate

P. A. Suchetan,^a Sabine Foro^b and B. Thimme Gowda^a*

^aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and ^bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany Correspondence e-mail: gowdabt@yahoo.com

Received 5 December 2010; accepted 13 December 2010

Key indicators: single-crystal X-ray study; T = 299 K; mean σ (C–C) = 0.003 Å; disorder in solvent or counterion; R factor = 0.039; wR factor = 0.099; data-toparameter ratio = 14.9.

The unit cell of the title compound, $C_{13}H_9Cl_2NO_3S \cdot 0.5C_7H_8$, contains two molecules of 2-chloro-N-(4-chlorobenzoyl)benzenesulfonamide and one toluene molecule, which is disordered about a centre of inversion. The dihedral angle between the two aromatic rings is 85.7 (1)°. In the crystal, molecules are linked by pairs of $N-H\cdots O(S)$ hydrogen bonds, forming centrosymmetric dimers.

Related literature

For background to our study of the effect of ring and sidechain substitutions on the crystal structures of N-aryl sulfonamides and for similar structures, see: Gowda et al. (2010a,b); Suchetan et al. (2010).

Experimental

Crystal data

$C_{13}H_9Cl_2NO_3S\cdot 0.5C_7H_8$	c = 11.346 (1) Å
$M_r = 376.24$	$\alpha = 73.868 \ (8)^{\circ}$
Triclinic, P1	$\beta = 75.927 \ (9)^{\circ}$
$a = 7.5992 \ (9) \ \text{\AA}$	$\gamma = 70.994 \ (8)^{\circ}$
b = 10.876 (1) Å	$V = 839.58 (15) \text{ Å}^{-1}$

Z = 2Mo $K\alpha$ radiation $\mu = 0.53 \text{ mm}^{-1}$

Data collection

Oxford Diffraction Xcalibur	Diffraction, 2009)
diffractometer with a Sapphire	$T_{\min} = 0.802, T_{\max}$
CCD detector	5654 measured refle
Absorption correction: multi-scan	3405 independent re
(CrysAlis RED; Oxford	2941 reflections with
	$R_{\rm int} = 0.009$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	
$wR(F^2) = 0.099$	
S = 1.06	
3405 reflections	
229 parameters	
3 restraints	

T = 299 K $0.44 \times 0.44 \times 0.36 \text{ mm}$

$T_{\min} = 0.802, \ T_{\max} = 0.834$
5654 measured reflections
3405 independent reflections
2941 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.009$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.43$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$	
$N1 - H1N \cdots O1^{i}$	0.82 (2)	2.13 (2)	2.951 (2)	176 (2)	
Symmetry code: (i) $-r + 1 - v + 1 - z + 1$					

x + 1, -y + 1, -z + 1

Data collection: CrvsAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

PAS thanks the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for the award of a research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5432)

References

- Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010a). Acta Cryst. E66, 0747.
- Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010b). Acta Cryst. E66, 01343
- Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1040.

Acta Cryst. (2011). E67, o146 [doi:10.1107/S1600536810052281]

2-Chloro-N-(4-chlorobenzoyl)benzenesulfonamide toluene hemisolvate

P. A. Suchetan, S. Foro and B. T. Gowda

Comment

In the present work, as a part of studying the effect of ring and the side chain substitutions on the crystal structures of *N*-aryl sulfonamides (Gowda *et al.*, 2010*a,b*; Suchetan *et al.*, 2010), the structure of 2-chloro-*N*-(4-chlorobenzoyl)benzenesulfonamide (I) has been determined. The asymmetric unit of (I) contains also half a molecule of toluene which is disordered about a centre of inversion. The conformation of the N—C bond in the C—SO₂—NH—C(O) segment has *gauche* torsions with respect to the SO bonds. In these segments, the N—H bond is *anti* to the C=O bond (Fig. 1), similar to those observed in 2-chloro-*N*-(2-chlorobenzoyl)-benzenesulfonamide (II) (Suchetan *et al.*, 2010), 2-chloro-*N*-(3-chlorobenzoyl)benzenesulfonamide (III) (Gowda *et al.*, 2010*b*)), 2-methyl-*N*- (4-methylbenzoyl)benzenesulfonamide (IV) (Gowda *et al.*, 2010*a*).

The molecule in (I) is twisted at the *S* atom with the C—SO₂—NH—C(O) torsional angle of -62.7 (2)°, compared to those of -66.5 (2)° in (II), -62.6 (3)° and -62.6 (2)° in the two molecules of (III), and -53.1 (2)° and 61.2 (2)° in the two independent molecules of (IV).

The dihedral angle between the sulfonyl benzene ring and the $-SO_2$ -NH-C-O segment is 88.5 (1)°, compared to the values of 86.9 (1) in (II), 89.9 (1)° and 86.4 (1)° in the two molecules of (III), and 86.0 (1)° (molecule 1) and 87.9 (1)° (molecule 2) in (IV).

Furthermore, the dihedral angle between the sulfonyl and the benzoyl benzene rings is $85.7 (1)^\circ$, compared to the values of 76.9 (1) in (II), 77.8 (1)° (molecule 1) and $83.5 (1)^\circ$ (molecule 2) in (III), and $88.1 (1)^\circ$ and $83.5 (1)^\circ$ in the two independent molecules of (IV).

The packing of molecules linked by N—H…O hydrogen bonds (Table 1) is shown in Fig. 2.

Experimental

The title compound was prepared by refluxing a mixture of 4-chlorobenzoic acid, 2-chlorobenzenesulfonamide and phosphorous oxychloride for 3 h on a water bath. The resultant mixture was cooled and poured into ice cold water. The solid obtained was filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. It was filtered, dried and recrystallized.

Prism like colourless single crystals of the title compound used in X-ray diffraction studies were obtained by a slow evaporation of its toluene solution at room temperature.

Refinement

The H atom of the NH group was located in a difference map and later restrained to N—H = 0.86(1) %A. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic

displacement parameters (set to 1.2 times of the U_{eq} of the parent atom). The solvent toluene molecule is disordered about a centre of inversion. The components of the displacement parameters of C15 C16 C17 were restrained to be equal within an effective standard deviation 0.01.

Figures

Fig. 1. Molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.

2-Chloro-N-(4-chlorobenzoyl)benzenesulfonamide toluene hemisolvate

Crystal data	
--------------	--

$C_{13}H_9Cl_2NO_3S{\cdot}0.5C_7H_8$	Z = 2
$M_r = 376.24$	F(000) = 386
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.488 {\rm Mg m}^{-3}$
Hall symbol: -p 1	Mo K α radiation, $\lambda = 0.71073$ Å
a = 7.5992 (9) Å	Cell parameters from 3881 reflections
b = 10.876 (1) Å	$\theta = 2.9 - 27.8^{\circ}$
c = 11.346 (1) Å	$\mu = 0.53 \text{ mm}^{-1}$
$\alpha = 73.868 \ (8)^{\circ}$	T = 299 K
$\beta = 75.927 \ (9)^{\circ}$	Prism, colourless
$\gamma = 70.994 \ (8)^{\circ}$	$0.44 \times 0.44 \times 0.36 \text{ mm}$
$V = 839.58 (15) \text{ Å}^3$	

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector	3405 independent reflections
Radiation source: fine-focus sealed tube	2941 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.009$
Rotation method data acquisition using ω and ϕ scans	$\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 2.9^{\circ}$
Absorption correction: multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2009)	$h = -9 \rightarrow 9$
$T_{\min} = 0.802, \ T_{\max} = 0.834$	$k = -13 \rightarrow 13$
5654 measured reflections	$l = -13 \rightarrow 14$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.099$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.06	$w = 1/[\sigma^2(F_o^2) + (0.0428P)^2 + 0.4443P]$ where $P = (F_o^2 + 2F_c^2)/3$
3405 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
229 parameters	$\Delta \rho_{max} = 0.24 \text{ e } \text{\AA}^{-3}$
3 restraints	$\Delta \rho_{\rm min} = -0.43 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Cl1	0.82406 (9)	0.59662 (6)	0.34975 (6)	0.06376 (18)	
Cl2	0.89482 (11)	-0.27177 (6)	0.59894 (6)	0.0726 (2)	
S1	0.46063 (7)	0.54050 (5)	0.28910 (4)	0.04093 (14)	
01	0.4019 (2)	0.61891 (14)	0.38181 (13)	0.0523 (4)	
O2	0.3219 (2)	0.53244 (17)	0.22960 (15)	0.0594 (4)	
O3	0.6558 (3)	0.30065 (15)	0.19122 (13)	0.0597 (4)	
N1	0.5639 (2)	0.38940 (16)	0.36235 (15)	0.0428 (4)	
H1N	0.579 (3)	0.386 (2)	0.433 (2)	0.051*	
C1	0.6378 (3)	0.59331 (18)	0.17244 (17)	0.0395 (4)	
C2	0.7921 (3)	0.61655 (19)	0.19841 (19)	0.0456 (4)	
C3	0.9255 (3)	0.6578 (2)	0.1010 (3)	0.0635 (6)	
H3	1.0305	0.6722	0.1173	0.076*	
C4	0.9015 (4)	0.6773 (3)	-0.0197 (3)	0.0745 (8)	
H4	0.9911	0.7050	-0.0848	0.089*	
C5	0.7480 (4)	0.6567 (3)	-0.0455 (2)	0.0682 (7)	

H5	0.7325	0.6719	-0.1277	0.082*	
C6	0.6166 (3)	0.6134 (2)	0.04986 (19)	0.0523 (5)	
H6	0.5136	0.5977	0.0323	0.063*	
C7	0.6431 (3)	0.28362 (19)	0.30279 (18)	0.0421 (4)	
C8	0.7089 (3)	0.14941 (18)	0.38331 (18)	0.0404 (4)	
C9	0.6374 (3)	0.1159 (2)	0.50887 (19)	0.0485 (5)	
Н9	0.5501	0.1807	0.5485	0.058*	
C10	0.6955 (3)	-0.0136 (2)	0.5754 (2)	0.0536 (5)	
H10	0.6468	-0.0362	0.6595	0.064*	
C11	0.8254 (3)	-0.1085 (2)	0.5167 (2)	0.0478 (5)	
C12	0.9002 (3)	-0.0773 (2)	0.3927 (2)	0.0581 (6)	
H12	0.9893	-0.1421	0.3541	0.070*	
C13	0.8411 (3)	0.0512 (2)	0.3268 (2)	0.0549 (5)	
H13	0.8906	0.0729	0.2427	0.066*	
C14	0.4143 (9)	-0.0335 (6)	1.0155 (6)	0.0821 (17)	0.50
C15	0.4774 (7)	0.0445 (4)	0.8986 (3)	0.0963 (11)	
H15A	0.4031	0.0715	0.8369	0.116*	0.50
H15B	0.5192	0.0831	0.8135	0.116*	0.50
C16	0.6245 (14)	0.0797 (6)	0.8707 (7)	0.1058 (17)	0.50
H16A	0.6644	0.1127	0.7870	0.127*	0.50
C17	0.7412 (8)	0.0691 (6)	0.9649 (7)	0.1470 (19)	
H17A	0.8390	0.1082	0.9492	0.176*	0.50
H17B	0.7570	0.1193	0.8808	0.176*	0.50
H17C	0.8486	-0.0073	0.9758	0.176*	0.50
H17D	0.7303	0.1239	1.0210	0.176*	0.50
C18	0.6696 (18)	-0.0094 (9)	1.0854 (11)	0.126 (4)	0.50
H18A	0.7398	-0.0358	1.1493	0.151*	0.50

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0641 (4)	0.0659 (4)	0.0699 (4)	-0.0150 (3)	-0.0330 (3)	-0.0130 (3)
C12	0.1049 (5)	0.0385 (3)	0.0687 (4)	-0.0145 (3)	-0.0255 (3)	0.0005 (3)
S1	0.0408 (2)	0.0379 (2)	0.0415 (3)	-0.00830 (18)	-0.00962 (19)	-0.00531 (19)
01	0.0585 (9)	0.0427 (8)	0.0456 (8)	-0.0038 (6)	-0.0031 (6)	-0.0105 (6)
O2	0.0473 (8)	0.0649 (10)	0.0689 (10)	-0.0177 (7)	-0.0222 (7)	-0.0057 (8)
O3	0.0875 (12)	0.0494 (9)	0.0409 (8)	-0.0161 (8)	-0.0134 (7)	-0.0091 (6)
N1	0.0553 (10)	0.0353 (8)	0.0373 (8)	-0.0109 (7)	-0.0111 (7)	-0.0061 (7)
C1	0.0434 (10)	0.0313 (9)	0.0408 (9)	-0.0071 (7)	-0.0082 (8)	-0.0061 (7)
C2	0.0445 (10)	0.0347 (9)	0.0534 (11)	-0.0061 (8)	-0.0116 (9)	-0.0057 (8)
C3	0.0464 (12)	0.0493 (13)	0.0864 (18)	-0.0130 (10)	-0.0034 (11)	-0.0085 (12)
C4	0.0755 (17)	0.0581 (15)	0.0659 (16)	-0.0184 (13)	0.0197 (13)	-0.0034 (12)
C5	0.0890 (19)	0.0590 (15)	0.0431 (12)	-0.0150 (13)	0.0013 (12)	-0.0073 (10)
C6	0.0681 (14)	0.0454 (11)	0.0419 (11)	-0.0128 (10)	-0.0128 (10)	-0.0076 (9)
C7	0.0469 (10)	0.0404 (10)	0.0419 (10)	-0.0162 (8)	-0.0067 (8)	-0.0093 (8)
C8	0.0457 (10)	0.0373 (9)	0.0419 (10)	-0.0161 (8)	-0.0070 (8)	-0.0092 (8)
C9	0.0587 (12)	0.0393 (10)	0.0455 (11)	-0.0127 (9)	-0.0030 (9)	-0.0119 (8)
C10	0.0746 (15)	0.0443 (11)	0.0410 (11)	-0.0202 (10)	-0.0058 (10)	-0.0071 (9)

011	0.0505 (10)	0.0240 (10)	0.0510 (1	1)	0.015((0)	0.0150 (0)	0.0040(0)	
	0.0595 (12)	0.0348 (10)	0.0518 (1	1)	-0.0156 (9)	-0.0158(9)	-0.0049(8)	
C12	0.0641 (14)	0.0410(11)	0.0603 (1	3) 1)	-0.0096 (10)	0.0025 (11)	-0.0143 (10)	
C13	0.0694(14)	0.0432(11)	0.0449 (1	1)	-0.0159(10)	-0.0041(10)	-0.009/(9)	
C14	0.078(4) 0.125(3)	0.003(4) 0.082(2)	0.083(4) 0.0583(1)	8)	0.013(3)	-0.021(2)	-0.0238(17)	
C16	0.125 (5)	0.051 (3)	0.079(4)	0)	-0.001(4)	0.021(2) 0.022(3)	-0.016(3)	
C17	0.113 (4)	0.114 (4)	0.198 (6)		0.002 (3)	-0.018(3)	-0.057(4)	
C18	0.164 (9)	0.088 (5)	0.154 (9)		-0.001 (6)	-0.108 (8)	-0.042 (5)	
Geometric paran	neters (Å, °)							
Cl1—C2		1.737 (2)		С12—Н	12		0.9300	
Cl2—C11		1.735 (2)		С13—Н	13		0.9300	
S1—O2		1.4191 (15)		C14—C1	16 ⁱ		1.248 (10)	
S1—O1		1.4336 (15)		C14—C1	17 ⁱ		1.311 (8)	
S1—N1		1.6508 (17)		C14—C1	18 ⁱ		1.342 (10)	
S1—C1		1.763 (2)		C14—C1	15 ⁱ		1.379 (8)	
O3—C7		1.212 (2)		C14—C1	15		1.428 (8)	
N1—C7		1.388 (2)		C14—C1	l4 ⁱ		1.613 (16)	
N1—H1N		0.82 (2)		C15—C1	16		1.239 (10)	
C1—C6		1.387 (3)		C15—C1	18 ⁱ		1.252 (11)	
C1—C2		1.389 (3)		C15—C1	14 ⁱ		1.379 (8)	
C2—C3		1.388 (3)		С15—Н	15A		0.9300	
C3—C4		1.374 (4)		С15—Н	15B		0.9601	
С3—Н3		0.9300		C16—C1	14 ⁱ		1.248 (10)	
C4—C5		1.368 (4)		C16—C1	17		1.506 (11)	
C4—H4		0.9300		С16—Н	15B		1.1326	
C5—C6		1.373 (3)		С16—Н	16A		0.9300	
С5—Н5		0.9300		С16—Н	17B		1.2556	
С6—Н6		0.9300		C17—C1	l4 ⁱ		1.311 (8)	
С7—С8		1.490 (3)		C17—C1	18		1.478 (13)	
C8—C9		1.386 (3)		С17—Н	17A		0.9299	
C8—C13		1.389 (3)		С17—Н	17B		0.9600	
C9—C10		1.384 (3)		С17—Н	17C		0.9600	
С9—Н9		0.9300		СГ/—Н	I/D		0.9599	
C10—C11		1.371 (3)		C18—C1	15 ¹		1.252 (11)	
C10—H10		0.9300		C18—C1	14 ¹		1.342 (10)	
CII—CI2		1.375 (3)		С18—Н	18A		0.9300	
C12C13		1.374 (3)						
02—S1—O1		118.68 (10)		C18 ¹ —C	$14-C14^{1}$		106.8 (10)	
O2—S1—N1		108.83 (9)		C15 ⁱ —C	$14-C14^{i}$		56.4 (5)	
O1—S1—N1		104.52 (9)		C15—C1	$14-C14^{i}$		53.5 (5)	
O2—S1—C1		107.90 (9)		C16—C1	15—C18 ⁱ		173.8 (7)	
O1—S1—C1		110.14 (9)		C16—C1	15—C14 ⁱ		56.6 (5)	
N1—S1—C1		106.05 (9)		C18 ⁱ —C	15—C14 ⁱ		129.3 (7)	

C7—N1—S1	122.20 (14)	C16—C15—C14	125.8 (6)
C7—N1—H1N	123.3 (17)	C18 ⁱ —C15—C14	59.7 (6)
S1—N1—H1N	113.9 (17)	C14 ⁱ —C15—C14	70.1 (6)
C6—C1—C2	119.90 (19)	C16—C15—H15A	116.1
C6—C1—S1	116.98 (16)	C18 ⁱ —C15—H15A	58.4
C2—C1—S1	123.11 (15)	C14 ⁱ —C15—H15A	167.6
C3—C2—C1	119.4 (2)	C14—C15—H15A	118.0
C3—C2—Cl1	118.42 (18)	C16—C15—H15B	60.4
C1—C2—Cl1	122.13 (16)	C18 ⁱ —C15—H15B	113.7
C4—C3—C2	119.7 (2)	C14 ⁱ —C15—H15B	117.0
С4—С3—Н3	120.2	C14—C15—H15B	168.8
С2—С3—Н3	120.2	H15A—C15—H15B	56.6
C5—C4—C3	121.0 (2)	C15-C16-C14 ⁱ	67.3 (6)
С5—С4—Н4	119.5	C15-C16-C17	123.2 (6)
С3—С4—Н4	119.5	C14 ⁱ —C16—C17	55.9 (5)
C4—C5—C6	120.0 (2)	C15—C16—H15B	47.5
С4—С5—Н5	120.0	C14 ⁱ —C16—H15B	114.8
С6—С5—Н5	120.0	C17—C16—H15B	170.6
C5—C6—C1	120.0 (2)	C15-C16-H16A	117.5
С5—С6—Н6	120.0	C14 ⁱ —C16—H16A	174.9
С1—С6—Н6	120.0	C17—C16—H16A	119.3
O3—C7—N1	121.13 (18)	H15B—C16—H16A	70.1
O3—C7—C8	122.36 (18)	C15—C16—H17B	160.2
N1—C7—C8	116.50 (16)	C14 ⁱ —C16—H17B	94.6
C9—C8—C13	118.74 (18)	C17—C16—H17B	39.4
C9—C8—C7	123.58 (18)	H15B—C16—H17B	149.2
C13—C8—C7	117.56 (17)	H16A—C16—H17B	80.9
С10—С9—С8	120.19 (19)	C14 ⁱ —C17—C18	57.1 (5)
С10—С9—Н9	119.9	C14 ⁱ —C17—C16	52.0 (5)
С8—С9—Н9	119.9	C18—C17—C16	108.5 (6)
C11—C10—C9	119.68 (19)	C14 ⁱ —C17—H17A	170.8
C11—C10—H10	120.2	C18—C17—H17A	126.6
С9—С10—Н10	120.2	C16—C17—H17A	124.9
C10-C11-C12	121.18 (19)	C14 ⁱ —C17—H17B	107.2
C10-C11-Cl2	119.84 (17)	C18—C17—H17B	164.3
C12—C11—Cl2	118.97 (17)	C16—C17—H17B	56.1
C11—C12—C13	119.0 (2)	H17A—C17—H17B	68.8
C11—C12—H12	120.5	C14 ⁱ —C17—H17C	111.2
C13—C12—H12	120.5	C18—C17—H17C	79.3
C12—C13—C8	121.2 (2)	С16—С17—Н17С	117.5
С12—С13—Н13	119.4	H17A—C17—H17C	78.0
C8—C13—H13	119.4	H17B—C17—H17C	109.5
C16 ⁱ —C14—C17 ⁱ	72.1 (7)	C14 ⁱ —C17—H17D	110.0
C16 ⁱ —C14—C18 ⁱ	138.6 (10)	C18—C17—H17D	78.3
C17 ⁱ —C14—C18 ⁱ	67.7 (7)	C16—C17—H17D	133.0

C16 ⁱ —C14—C15 ⁱ	56.1 (6)	H17A—C17—H17D	65.1
C17 ⁱ —C14—C15 ⁱ	128.1 (7)	H17B—C17—H17D	109.5
C18 ⁱ —C14—C15 ⁱ	162.3 (9)	H17C—C17—H17D	109.5
C16 ⁱ —C14—C15	163.1 (8)	C15 ⁱ —C18—C14 ⁱ	66.7 (6)
C17 ⁱ —C14—C15	121.3 (6)	C15 ⁱ —C18—C17	121.8 (7)
C18 ⁱ —C14—C15	53.6 (6)	C14 ⁱ —C18—C17	55.2 (6)
C15 ⁱ —C14—C15	109.9 (6)	C15 ⁱ —C18—H18A	120.0
C16 ⁱ —C14—C14 ⁱ	111.7 (9)	C14 ⁱ —C18—H18A	173.2
C17 ⁱ —C14—C14 ⁱ	171.1 (7)	C17—C18—H18A	118.2
O2—S1—N1—C7	53.15 (18)	C9—C10—C11—Cl2	-178.61 (17)
O1—S1—N1—C7	-179.10 (15)	C10-C11-C12-C13	-0.8 (4)
C1—S1—N1—C7	-62.70 (17)	Cl2—C11—C12—C13	178.16 (19)
O2—S1—C1—C6	-1.61 (18)	C11—C12—C13—C8	0.4 (4)
O1—S1—C1—C6	-132.58 (15)	C9—C8—C13—C12	0.5 (3)
N1—S1—C1—C6	114.87 (16)	C7—C8—C13—C12	-175.8 (2)
O2—S1—C1—C2	177.49 (16)	C16 ⁱ —C14—C15—C16	42 (2)
O1—S1—C1—C2	46.52 (18)	C17 ⁱ —C14—C15—C16	-178.0 (6)
N1—S1—C1—C2	-66.03 (18)	C18 ⁱ —C14—C15—C16	-176.6 (7)
C6—C1—C2—C3	-1.0 (3)	C15 ⁱ —C14—C15—C16	10.8 (6)
S1—C1—C2—C3	179.91 (16)	C14 ⁱ —C14—C15—C16	10.8 (6)
C6—C1—C2—Cl1	178.61 (15)	C16 ⁱ —C14—C15—C18 ⁱ	-141 (2)
S1—C1—C2—Cl1	-0.5 (2)	C17 ⁱ —C14—C15—C18 ⁱ	-1.4 (7)
C1—C2—C3—C4	1.1 (3)	C15 ⁱ —C14—C15—C18 ⁱ	-172.6 (6)
Cl1—C2—C3—C4	-178.52 (19)	C14 ⁱ —C14—C15—C18 ⁱ	-172.6 (6)
C2—C3—C4—C5	0.0 (4)	C16 ⁱ —C14—C15—C14 ⁱ	31 (2)
C3—C4—C5—C6	-1.2 (4)	C17 ⁱ —C14—C15—C14 ⁱ	171.2 (7)
C4—C5—C6—C1	1.3 (4)	C18 ⁱ —C14—C15—C14 ⁱ	172.6 (6)
C2-C1-C6-C5	-0.2 (3)	C15 ⁱ —C14—C15—C14 ⁱ	0.0
S1—C1—C6—C5	178.95 (18)	C18 ⁱ —C15—C16—C14 ⁱ	-164 (5)
S1—N1—C7—O3	7.2 (3)	C14—C15—C16—C14 ⁱ	-12.2 (7)
S1—N1—C7—C8	-172.21 (14)	C18 ⁱ —C15—C16—C17	-164 (5)
O3—C7—C8—C9	-154.7 (2)	C14 ⁱ —C15—C16—C17	-0.8 (5)
N1—C7—C8—C9	24.7 (3)	C14—C15—C16—C17	-12.9 (9)
O3—C7—C8—C13	21.4 (3)	C15-C16-C17-C14 ⁱ	0.9 (5)
N1—C7—C8—C13	-159.19 (19)	C15—C16—C17—C18	9.8 (8)
C13—C8—C9—C10	-0.9 (3)	C14 ⁱ —C16—C17—C18	8.9 (6)
C7—C8—C9—C10	175.12 (19)	C14 ⁱ —C17—C18—C15 ⁱ	1.4 (7)
C8—C9—C10—C11	0.5 (3)	C16—C17—C18—C15 ⁱ	-7.0 (10)
C9—C10—C11—C12	0.4 (3)	C16-C17-C18-C14 ⁱ	-8.4 (5)
Symmetry codes: (i) $-x+1$, $-y$, $-z+2$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!-\!\!\!\!\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
N1—H1N····O1 ⁱⁱ	0.82 (2)	2.13 (2)	2.951 (2)	176 (2)
Symmetry codes: (ii) $-x+1, -y+1, -z+1$.				

